Simplified partial resampling method for state estimation usingparticle filter
نویسندگان
چکیده
منابع مشابه
An Effective Attack-Resilient Kalman Filter-Based Approach for Dynamic State Estimation of Synchronous Machine
Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper...
متن کاملResampling Method for Unsupervised Estimation of Cluster Validity
We introduce a method for validation of results obtained by clustering analysis of data. The method is based on resampling the available data. A figure of merit that measures the stability of clustering solutions against resampling is introduced. Clusters that are stable against resampling give rise to local maxima of this figure of merit. This is presented first for a one-dimensional data set,...
متن کاملUnscented Kalman Filter for Vehicle State Estimation
Vehicle Dynamics Control (VDC) systems require the information about system variables, which cannot be directly measured, e.g., the wheel slip or the vehicle side-slip angle. This paper presents a new concept for the vehicle state estimation under assumption that the vehicle is equipped with the standard VDC sensors. It is proposed to utilize an Unscented Kalman Filter (UKF) for estimation purp...
متن کاملEstimation of underwater noise – a simplified method
A set of procedures has been developed to allow preliminary estimates to be made of underwater noise and its effects on marine species. They do not require detailed acoustic survey data, either of the site or of the proposed plant. However, they still facilitate the comparison of different project proposals to assist in the optimisation of equipment layout and routing. Noise may be due to speci...
متن کاملResampling the ensemble Kalman filter
Ensemble Kalman filters (EnKF) based on a small ensemble tend to provide collapse of the ensemble over time. It is shown that this collapse is caused by positive coupling of the ensemble members due to use of one common estimate of the Kalman gain for the update of all ensemble members at each time step. This coupling can be avoided by resampling the Kalman gain from its sampling distribution i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering & Technology
سال: 2018
ISSN: 2227-524X
DOI: 10.14419/ijet.v7i2.7.10588